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Abstract

First we study several extremal problems on minimax, and prove that they are equivalent. Then we
connect this result with the exact values of some approximation characteristics of diagonal operators in
different settings, such as the best n-term approximation, the linear average and stochastic n-widths, and the
Kolmogorov and linear n-widths. Most of these exact values were known before, but in terms of equivalence
of these extremal problems, we present a unified approach to give them a direct proof.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Let �p, 0 < p�∞, be the classical real sequence space with the usual norm (or quasi-norm)
and ei = (0, 0, . . . , 1, 0, . . .) where the ith coordinate is one and the others are zeros. The Fourier
coefficients of f ∈ �p are denoted by fi := 〈f, ei〉, where 〈, 〉 means the usual inner product in
�2. Consider an operator T : �p �→ �q (0 < p�q < ∞), which is defined by

T {ei}∞i=1 = {�iei}∞i=1, i = 1, 2, . . . , (1)
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where �1 ��2 � · · · ��n � · · · �0 and limn�→∞ �n = 0. Then T is a diagonal operator from �p

to �q . Clearly, in a certain sense, the diagonal operators will share some properties of eigenvalues
for compact operators on the Hilbert space.

The purpose of this paper is to study several extremal problems which are in close relation
with various approximation methods in the worst, average case setting, and the randomized
setting. Using these results, we give a new and simple proof to the exact value of the best n-
term approximation of the diagonal operators on the space �p, 0 < p < ∞, and we continue the
research of Mathé [8,9], and Novak [11] to determine the exact constants of the linear average
n-widths of diagonal operators on the space �p (1 < p < 2). Finally, it is also the most important
contribution of this paper that we discuss the relations between the various n-widths and the
best n-term approximation in �2 space. These approximation quantities are equal, and they were
obtained before by different authors [4,9,10,11,15,16,17,19] in different methods, but we present
a unified approach to give them a direct proof in terms of the equivalence of these extremal
problems without using the exact value of the extremal problems.

The organization of the paper is as follows. In Section 2, we study several extremal problems on
minimax. Section 3 consists of four subsections. Each of the first three subsections is connected
with one or two extremal problems, and in Section 3.4, we review some related results of Gel’fand
and information n-widths. In the last section, we give a summary.

2. Exact solutions of some extremal problems

In this section, we study several extremal problems which are connected with various n-widths
and the best n-term approximation.

Let n ∈ N be given, B = {
b = {bi}∞i=1 : bi �0,

∑∞
i=1 bi �1

}
, and

Xn =
{

� = {�i}∞i=1 : 0��i �1,

∞∑
i=1

�i �n

}
.

It is clear that B and Xn are closed convex sets. Let us denote by Ext(B) (Ext(Xn)) the set
of all extreme points of B (Xn). Clearly, Ext(B) = {ei, i = 1, 2, . . .}⋃ {0}, and Ext(Xn) =⋃n

k=0 {� = {�i}∞i=1, �i ∈ {0, 1} ,
∑∞

i=1 �i = k}.
We start with a proposition, which plays a key role in connecting to two different extremal

problems, and can be obtained from much more result about properties of a continuous, convex
and real function defined on a compact and convex set. Here, we prefer to give a elementary
proof.

Proposition 1. Let ci �0, i = 1, 2, . . . , and
∑∞

i=1 ci < ∞. Then

sup
�∈Xn

∞∑
i=1

ci�i = sup
�∈Ext(Xn)

∞∑
i=1

ci�i . (2)

Proof. Let cj1 , cj2 , . . . , cjn be the first n numbers which are not equal to zero and let M :=
min{cj1 , cj2 , . . . , cjn} > 0. Since

∑∞
i=1 ci < ∞, there exits a natural number N > n such that∑∞

k=N+1 ck < M . So ck < M for all k�N + 1. We rearrange the numbers c1, c2, . . . , cN and
obtain ci1 �ci2 � · · · �ciN . Let �∗

n = {i1, . . . , in}, �∗ = {�∗
i }∞i=1 where �∗

i = 1 if i ∈ �∗
n and
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�∗
i = 0 if i /∈ �∗

n, then

sup
�∈Ext(Xn)

∞∑
i=1

ci�i =
∞∑
i=1

ci�
∗
i .

It is clear that

sup
�∈Xn

∞∑
i=1

ci�i � sup
�∈Ext(Xn)

∞∑
i=1

ci�i =
∞∑
i=1

ci�
∗
i . (3)

On the other hand, if i /∈ �∗
n, then ci �cin , thus, for any � ∈ Xn, we have

∞∑
i=1

ci�i =
∑
i∈�∗

n

ci�i +
∑
i /∈�∗

n

ci�i �
∑
i∈�∗

n

ci�i + cin

⎛
⎝n −

∑
i∈�∗

n

�i

⎞
⎠

=
∑
i∈�∗

n

ci�i + cin

∑
i∈�∗

n

(1 − �i )�
∑
i∈�∗

n

ci�i +
∑
i∈�∗

n

ci(1 − �i )

=
∑
i∈�∗

n

ci =
∞∑
i=1

ci�
∗
i , (4)

which together with (3) completes the proof of Proposition 1. �

A family F = {�� : � ∈ B} of real functions defined on some set K is said to be concave, if
given any collection �1, �2, . . . , �n in F and c1, c2, . . . , cn �0 such that

∑n
i=1 ci = 1, there is

a � ∈ F satisfying

�(x)�
n∑

i=1

ci�i (x), ∀x ∈ K.

Lemma 1 (Pietsch [13, p. 40, Ky Fan Lemma]). Let K be a compact convex subset of a linear
topological Hausdorff space and let F be a concave collection of lower semi-continuous convex
real functions � on K. Suppose that for every � ∈ F there exists an x ∈ K with �(x)��. Then
we can find an x0 ∈ K such that �(x0)�� for all � ∈ F, simultaneously.

Using Ky Fan’s lemma (or minimax theorem) above, we get

Proposition 2. Let �1 ��2 � · · · ��i � · · · �0 and limi→∞ �i = 0. Then

sup
b∈B

, inf
�∈Xn

∞∑
i=1

�ibi(1 − �i ) = inf
�∈Xn

, sup
b∈B

∞∑
i=1

�ibi(1 − �i ). (5)

Proof. Let Xn be considered as a subset of �2. Then it is closed and convex. Moreover, it is
compact with respect to the weak topology. For every b ∈ B, we denote

�b(�) :=
∞∑
i=1

�ibi(1 − �i ), � ∈ Xn.
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So the function �b(�) is continuous on �. Let F = {�b, b ∈ B} , m ∈ N and c1, c2, . . . , cm �0
such that

∑m
i=1 ci = 1. Let b∗ = ∑m

i=1 ciei . Then b∗ ∈ B and

�b∗(�) =
m∑

i=1

ci�ei
(�), � ∈ Xn.

So F is concave. Let � > 0 and put � := supb∈B inf�∈Xn
�b(�). For all b ∈ B, we could find a

� ∈ Xn with �b(�)�� + �. Ky Fan’s lemma implies the existence of a �0 ∈ Xn, such that for all
b ∈ B we have �b(�0)�� + �. This means

inf
�∈Xn

sup
b∈B

�b(�)�� + �.

Since � > 0 is arbitrary, we obtain

inf
�∈Xn

sup
b∈B

�b(�)��.

Hence

inf
�∈Xn

sup
b∈B

�b(�)� sup
b∈B

inf
�∈Xn

�b(�).

On the other hand, it is clear

sup
b∈B

inf
�∈Xn

�b(�)� inf
�∈Xn

sup
b∈B

�b(�).

So the proof is completed. �

Propositions 1 and 2 give the main result of this section, which states that the values of following
four extremal problems on minimax are equal.

Theorem 1. Let 0 < p < ∞, �1 ��2 � · · · ��i � · · · �0 and limi→∞ �i = 0. Then

sup
b∈B

inf
�∈Ext(Xn)

∞∑
i=1

�p
i bi(1 − �i ) (6a)

= sup
b∈B

inf
�∈Xn

∞∑
i=1

�p
i bi(1 − �i ) (6b)

= inf
�∈Xn

sup
b∈B

∞∑
i=1

�p
i bi(1 − �i ) (6c)

= inf
�∈Xn

sup
b∈Ext(B)

∞∑
i=1

�p
i bi(1 − �i ). (6d)

Proof. Proposition 1 implies that (6a)=(6b). From Proposition 2, we have (6b)=(6c). Obviously,
(6d)� (6c) and

inf
�∈Xn

sup
b∈Ext(B)

∞∑
i=1

�p
i bi(1 − �i ) = inf

�∈Xn

sup
i∈N

�p
i (1 − �i ). (7)

So (6c)� (6d), and the proof of the theorem is complete. �
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Following some ideas of [4], [14, pp. 207–210], we give the solution of the extremal problem
(6d).

Proposition 3. Let 0 < p < ∞, �1 ��2 � · · · ��i � · · · �0 and limi→∞ �i = 0. Then

inf
�∈Xn

sup
b∈Ext(B)

∞∑
i=1

�p
i bi(1 − �i ) = max

m>n

m − n∑m
i=1 �−p

i

. (8)

Proof. From the equality (7), we only need to prove that

inf
�∈Xn

sup
i∈N

�p
i (1 − �i ) = max

m>n

m − n∑m
i=1 �−p

i

.

If �m > 0, we put

�n(m) = m − n∑m
i=1 �−p

i

for m = n + 1, . . . .

Otherwise let �n(m) = 0. It follows from

�−p
k sup

i∈N

{
(1 − �i )�

p
i

}
�(1 − �k) for all k ∈ N

that

m∑
k=1

�−p
k sup

i∈N

{
(1 − �i )�

p
i

}
�

m∑
k=1

(1 − �k)�m − n.

Consequently,

sup
i∈N

{
(1 − �i )�

p
i

}
��n(m) for m = n + 1, . . . ,

which implies that

inf
�∈Xn

sup
i∈N

�p
i (1 − �i )� sup

m>n
�n(m). (9)

Now we prove that the sup in (9) can be attained. Put s = [m/2]. For m > n, we have

m − n∑m
i=1 �−p

i

� m − n

s�−p
1 + s�−p

s

→ 0 as m → ∞,

hence, there exists an m0 �n + 1 such that

�n(m0) = max
m>n

�n(m) = sup
m>n

�n(m).

By an easy computation, it follows from

m0 − 1 − n∑m0−1
i=1 �−p

i

� m0 − n∑m0
i=1 �−p

i

and
m0 − n∑m0
i=1 �−p

i

� m0 + 1 − n∑m0+1
i=1 �−p

i

,
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that

�p
m0

��n(m0)��p
m0+1. (10)

Put

�∗
i =

{
1 − �n(m0)�

−p
i for i = 1, . . . , m0,

0 for i = m0 + 1, . . . .

Then 0��∗
i �1, and

∑∞
i=1 �∗

i = ∑m0
i=1 (1 − �n(m0)�

−p
i ) = m0 − (m0 − n) = n. By virtue of

(10) and

(1 − �∗
i )�

p
i =

{
�n(m0) for i = 1, . . . , m0,

�p
i for i = m0 + 1, . . . ,

we have

sup
i∈N

{
(1 − �∗

i )�
p
i

} = �n(m0),

consequently,

inf
�∈Xn

sup
i∈N

�p
i (1 − �i )��n(m0), (11)

which combining with (9) completes the proof of Proposition 3. �

From Proposition 3, we get

Corollary 1. The four extremal problems in Theorem 1 have the same value, i.e.,

(6a) = (6b) = (6c) = (6d) = max
m>n

m − n∑m
i=1 �−p

i

.

3. Connections to various approximation quantities

This section includes four subsections. First, in Section 3.1, we connect the best n-term ap-
proximation of the diagonal operator on the space �p, 0 < p < ∞, with the extremal problem
(6a). Second, in Section 3.2, we study the linear average and stochastic n-widths, which are re-
lated to the extremal problems (6b) and (6c). Then in Section 3.3, we investigate the relations of
the Kolmogorov and linear n-widths with the extremal problem (6d). Finally, in Section 3.4, we
review some related results of Gel’fand and information n-widths. Most results of this section
were known before, except the exact value of the linear average n-width of the diagonal operator
from �p to �2, 1 < p < 2 (see Theorem 2 and Remark 2), our main contribution of this section
is to study the best n-term approximation, and various n-widths of the diagonal operator in terms
of the equivalence of the extremal problems (6a)–(6d).
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3.1. Best n-term approximation

This subsection is devoted to the best n-term approximation due to Stechkin [18] in the studying
absolute convergence of the Fourier sequence [17]. The problem of n-term approximation is
closely related to some other nonlinear approximation problems and also to the applications in
the image and signal processing (for example, see [1] and the survey [2]).

Now we recall the definition of the best n-term approximation. Assume that �n is an arbitrary
collection of n natural numbers, ai, i ∈ �n, are real numbers, and P�n

= ∑
i∈�n

aiei . Then the
quantity

�n(f )p = inf
ai ,�n

‖f − P�n
‖p =

⎛
⎝‖f ‖p

p − sup
�n

∑
i∈�n

|fi |p
⎞
⎠

1/p

(12)

is called the best n-term approximation of f ∈ �p in the space �p. For the operator T denoted by
(1), the numbers �n(T ) can be presented as

�n(T ) := �n(T : �p �→ �q)

= sup
f ∈B�p

⎛
⎝‖T (f )‖q

q − sup
�n

∑
i∈�n

�q
i |fi |q

⎞
⎠

1/q

= sup
f ∈B�p

⎛
⎝ ∞∑

i=1

�q
i |fi |q − sup

�n

∑
i∈�n

�q
i |fi |q

⎞
⎠

1/q

= sup
f ∈B�p

inf
�n

⎛
⎝∑

i /∈�n

�q
i |fi |q

⎞
⎠

1/q

, 0 < p�q < ∞. (13)

Because �n can be identified with Ext(Xn), we have

Lemma 2. Let 0 < p < ∞. Then

�p
n (T : �p �→ �p) = sup

b∈B

inf
�∈Ext(Xn)

∞∑
i=1

�p
i bi(1 − �i ).

Lemma 2 and Corollary 1 imply

Corollary 2 (Stepanets [19]). Let 0 < p < ∞. Then

�n(T : �p �→ �p) = max
m>n

(
m − n∑m
i=1 �−p

i

)1/p

.

Remark 1. The above result was obtained by Stepanets in [19]. However, our proof is different.
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3.2. Linear average and stochastic n-widths

In this subsection, we continue the research of Novak [11] and Mathé [9] to determine the exact
value of the linear average, and stochastic n-widths for the diagonal operator T from �p, 1�p�2,
to �2.

Following Mathé [8,9] and Novak [11], we begin with the definitions of the linear average, and
stochastic n-widths. Let X, Y be normed spaces and T be a linear and continuous operator from
X to Y. We approximate T by

Tn = � ◦ N where N : X �→ Rn and � : Rn �→ Y.

One can study different classes of admissible information N and algorithms �. However, in this
paper, we always assume the information N is linear and continuous. The approximation of T
by Tn can be measured in the different settings, such as the worst case setting, the average case
setting and the randomized setting (see the monograph Traub et al. [21] for the history of this
problem and further information).

Denote by BX be the closed unit ball of the space X. Let B(BX) be the smallest �-algebras
on BX containing all open sets in BX, and 	 be a probability measure on [BX, B(BX)]. The
average error of T by Tn with respect to the measure 	 is defined by

�	(Tn) =
(∫

BX

‖T (f ) − Tn(f )‖2
Y d	(f )

)1/2

. (14)

The number

a
	−avg
n (T ) := a

	−avg
n (T : X �→ Y )

= inf
{�	(Tn)|N linear and continuous, � linear

}
= inf

{�	(Tn)|Tn linear and continuous with dim(Tn(X))�n
}

(15)

is called 	 linear average n-width [8,21].
Let P(BX) be the set of all probability measures on [BX,B(BX)]. Following Mathé [8], we

define the linear average n-width by

a
avg
n (T ) := a

avg
n (T : X �→ Y ) = sup

	∈P(BX)

a
	−avg
n (T ). (16)

Now we consider randomized (or Monte Carlo) methods of the form T 

n = �
 ◦ N
, i.e., the

mapping N : X �→ Rn and � : Rn �→ Y are randomly chosen. The error of T 

n is defined by

�max(T


n ) = sup

f ∈BX

(
E(‖T (f ) − T 


n (f )‖2
Y )
)1/2

, (17)

where E means the expectation of a random variable. We always assume that (f, 
) �→ ‖T (f )−
Tn(f )‖Y is measurable, i.e., �max(T



n ) is well defined. Similarly, we define the linear stochastic

n-width aran
n (T ) (see [3,8,11]) by

aran
n (T ) := aran

n (T : X �→ Y )

= inf{�max(T


n )| N
 linear and continuous, �
 linear}

= inf{�max(T


n )| T 


n linear and continuous with dim(T 

n (X)�n)}. (18)
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The following lemma gives a relation between the linear average and stochastic n-widths and
whose proof can be immediately obtained by Fubini’s theorem.

Lemma 3.

a
avg
n (T )�aran

n (T ). (19)

Consider the diagonal operator T defined by Eq. (1). The two equalities in the following lemma
can be found in [9,11] and relate the n-widths to the extremal problems (6b) and (6c) from
Theorem 1.

Lemma 4.

(a
avg
n (T : �1 �→ �2))

2 = sup
b∈B

inf
�∈Xn

∞∑
i=1

�2
i bi(1 − �i ), (20)

(aran
n (T : �2 �→ �2))

2 = inf
�∈Xn

sup
b∈B

∞∑
i=1

�2
i bi(1 − �i ). (21)

Note that the embedding �p ↪→ �q (1�p < q �∞) is measurable (see [22, p. 15]), using
Lemmas 3 and 4, we get the main result of this subsection as follows :

Theorem 2. Let 1�p�2. Then

a
avg
n (T : �p �→ �2) = aran

n (T : �p �→ �2) = max
m>n

(
m − n∑m
i=1 �−2

i

)1/2

. (22)

Proof. Since �1 ⊂ �p ⊂ �2 (1 < p < 2), by Lemma 3, we have

a
avg
n (T : �1 �→ �2) � a

avg
n (T : �p �→ �2)

� aran
n (T : �p �→ �2)�aran

n (T : �2 �→ �2), 1 < p < 2. (23)

Using the results of Theorem 1, Lemma 4 and Corollary 1, we obtain

a
avg
n (T : �1 �→ �2) = aran

n (T : �2 �→ �2) = max
m>n

(
m − n∑m
i=1 �−2

i

)1/2

,

which together with (23) completes the proof. �

Remark 2. The exact value of aran
n (T : �2 �→ �2) is due to Novak [11], a

avg
n (T : �1 �→ �2) and

aran
n (T : �p �→ �2), 1�p < 2, were calculated by Mathé in [9] and [10], the exact value of

a
avg
n (T : �p �→ �2), 1 < p < 2, is new.

Remark 3. In [20], Stepanets proved

�n(T : �p �→ �2) = max
m>n

(m − n)1/2(∑m
i=1 �−p

i

)1/p
, 1�p�2.
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So, it is interesting to note that for any p ∈ [1, 2],
�n(T : �2 �→ �2) = a

avg
n (T : �p �→ �2) = aran

n (T : �p �→ �2).

However, if 1�p < 2, then

�n(T : �p �→ �2) < a
avg
n (T : �p �→ �2) = aran

n (T : �p �→ �2).

3.3. Kolmogorov and linear n-widths

First we recall the definitions of the Kolmogorov and linear n-widths (see [14]). Let X and Y
be normed linear spaces, BX be the closed unit ball of X, and T : X �→ Y be a bounded linear
operator. The Kolmogorov n-width of T (BX) in Y is defined by

dn(T : X �→ Y ) := dn(T (BX), Y ) = inf
Xn

sup
x∈BX

inf
y∈Xn

‖T (x) − y‖Y ,

where Xn runs over all subspaces of Y of dimension n or less.
The linear n-width of T (BX) in Y is given by

an(T : X �→ Y ) := an(T (BX), Y ) = inf
Pn

sup
x∈BX

‖T (x) − Pn(x)‖Y ,

where the infimum is taken over all continuous linear operators Pn of X into Y of rank at most n.
As in [13, pp. 161–162], for the diagonal operator T defined by (1), we have

Lemma 5.

(dn(T : �1 �→ �2))
2 = (an(T : �1 �→ �2))

2

= inf
�∈Xn

sup
b∈Ext(B)

∞∑
i=1

�2
i bi(1 − �i ). (24)

This lemma relates to the quantity (6d) of Theorem 1. So from Lemmas 2, 4 and 5, applying
Theorem 1, we obtain

Theorem 3.

�n(T : �2 �→ �2) = a
avg
n (T : �1 �→ �2) = aran

n (T : �2 �→ �2)

= dn(T : �1 �→ �2) = an(T : �1 �→ �2).

Remark 4. (a) Let I be the identity operator, i.e., let �1 = · · · �M = 1 and �j = 0 for all j �M+1
in Theorem 3 (finite-dimensional case). We have

dn(I : �M
1 �→ �M

2 ) = (1 − n/M)1/2 , 1�n�M. (25)

The upper estimate in (25) was proved in the paper of Kolmogorov, Petrov, Smirnov in 1947 [5],
and the low bound was obtained by Maltsev [6]. But the authors of these papers did not actually
state that they had calculated n-width dn(I : �M

1 �→ �M
2 ). This was noted by Stechkin in [17].

The exact value of the Kolmogorov n-width dn(T : �M
1 �→ �M

2 ) of the diagonal operator T was
due to Sofman in 1969 (see [15]). Then in 1973 he extended this result to the infinite-dimensional
case in [16] (see also [4]).
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(b) Sun first noted in [23] that from

dn(T : �1 �→ �2) = max
m>n

(
m − n∑m
k=1 �−2

k

)1/2

, (26)

and the result of Stepanets [19]

�n(T : �2 �→ �2) = max
m>n

(
m − n∑m
k=1 �−2

k

)1/2

, (27)

one has

dn(I : �1 �→ �2) = �n(I : �2 �→ �2). (28)

He pointed out that the equality (28) is interesting in its own and conjectured that there should be
a direct proof without using the exact values. Our Theorem 3 confirms this claim.

(c) The exact values of the best n-term approximation, and other n-widths in Theorem 3 were
also known before [19,11,9,14]. However, our proof is new and does not depend on the knowledge
of the values of these quantities.

3.4. Gel’fand and information n-widths

In this subsection, we review some related results of Gel’fand and information n-widths (see
[7,12]). Let X and Y be normed linear spaces, BX be the closed unit ball of X, and T : X �→ Y be
a bounded linear operator.

The Gel’fand n-widths of T (BX) in Y is given by

dn(T : X �→ Y ) := dn(T (BX), Y ) = inf
Ln

sup
x∈BLn

‖T (x)‖Y ,

where BLn is the closed unit ball of Ln and the infimum is taken over all subspaces Ln of X of
codimension n.

The information n-widths of T (BX) in Y is defined by

in(T : X �→ Y ) := in(T (BX), Y ) = inf
Z⊃BX

l1,...,ln∈Z∗
inf

S : Mn �→Y
sup

f ∈BX

‖T (f ) − S(l1f, . . . , lnf )‖Y ,

where the infimum runs over all normed linear spaces Z containing BX, here M = R or C and
Z∗ is the dual space of Z.

Lemma 6 (Mathé [7, Theorem 5]; Pietsch [13, p. 161]; Osipenko [12, pp. 155–159]). Let T be
the diagonal operator defined by (1), n ∈ N. Then

an(T : �2 �→ �∞) = dn(T : �2 �→ �∞)

= in(T : �2 �→ �∞) = max
m>n

(
m − n∑m
k=1 �−2

k

)1/2

.
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4. Summary

In Section 3, we connect four extremal problems on minimax with some approximation quan-
tities which have the same value. Now we summarize all considerations as in the following
corollary.

Corollary 3. Let 1�p�2. Then

a
avg
n (T : �p �→ �2) = aran

n (T : �p �→ �2) = �n(T : �2 �→ �2)

= dn(T : �1 �→ �2) = an(T : �1 �→ �2) = an(T : �2 �→ �∞)

= dn(T : �2 �→ �∞) = in(T : �2 �→ �∞)

= max
m>n

(
m − n∑m
k=1 �−2

k

)1/2

.
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